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Abstract

It is an important question whether the final/initial state gluonic interactions which lead to naive-

time-reversal-odd single-spin asymmetries and diffraction at leading twist can be associated in a

definite way with the light-front wave function hadronic eigensolutions of QCD. We use light-front

time-ordered perturbation theory to obtain augmented light-front wave functions which contain

an imaginary phase which depends on the choice of advanced or retarded boundary condition

for the gauge potential in light-cone gauge. We apply this formalism to the wave functions of

the valence Fock states of nucleons and pions, and show how this illuminates the factorization

properties of naive-time-reversal-odd transverse momentum dependent observables which arise from

rescattering. In particular, one calculates the identical leading-twist Sivers function from the

overlap of augmented light-front wavefunctions that one obtains from explicit calculations of the

single-spin asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where

the required phases come from the final-state rescattering of the struck quark with the nucleon

spectators.

1



I. INTRODUCTION

Wave functions are key objects of the quantum world, specifying the structure of com-

posite states in terms of their fundamental constituents. The conceptual extension of the

non-relativistic wavefunctions of Schrödinger theory to relativistic hadron physics are the

frame-independent light-front wave functions (LFWFs) of hadrons ΨH
n (xi,

~ki⊥, λi) where

xi =
k+
i

P+ =
k0
i
+kz

i

P 0+P z are the light-front momentum fractions of the n constituents, ki⊥ the

transverse momentum components, and λi the parton helicities. The LFWFs are defined

as constituent wave functions at fixed light-front time τ = x+ = t + z/c and in the light-

cone gauge A+ = A0 + Az = 0 where Aµ represents the gauge field [1–4]. The LFWFs are

obtained explicitly by computing the hadronic eigensolutions |ΨH〉 of the QCD light-front

Hamiltonian HLF projected on the free Fock basis ΨH
n = 〈n|ΨH〉.

Light-front wave functions in QCD describe the quark and gluon composition of hadron

at a fundamental level, leading to a description of a wide range of hadronic and nuclear

physics phenomena [2]. For example, the parton distribution functions measured in deep

inelastic lepton-hadron scattering, including DGLAP evolution and their transverse mo-

mentum extensions, are defined from the sum over squares of the light-front wave functions.

Form factors are given by the sum of overlap matrix elements of the initial and final LFWFs

with the electroweak currents. The gauge-invariant distribution amplitudes φ(xi, Q) which

control hard exclusive reactions are the valence LFWFs integrated over transverse momenta

k2⊥ < Q2.

Recent theoretical developments have shown that final and/or initial-state interactions

can generate a phase in scattering amplitudes which lead to novel single transverse spin

asymmetries in high energy hadronic reactions at leading twist. A prime example of this

rescattering physics in QCD is the Sivers single-spin asymmetry measured in semi-inclusive

deep inelastic scattering and spin-dependent Drell-Yan lepton pair production [5–7]. Double

initial-state interactions lead to an anomalous cos 2φ azimuthal dependence of the production

plane in unpolarized lepton pair hadroproduction, corresponding to the breakdown of the

Lam-Tung relation in PQCD [8, 9]. Similarly, diffractive deep inelastic lepton scattering

ℓp→ ℓ′p′X arises from the exchange of gluons in the final state which occurs after the hard

lepton-quark interaction [10]. Since nuclear shadowing involves diffractive deep inelastic

processes, nuclear distributions are also dependent on rescattering processes.
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The wavefunctions of stable hadrons that are obtained by solving the Heisenberg problem

HQCD
LF |Ψ >= M2|Ψ > have a real phase. As discussed in Ref. [11], one can distinguish

“static” structure functions, the probabilistic distributions computed from the square of

the light-front wavefunctions of the target hadron from the “dynamic” structure functions

measured in deep inelastic lepton-hadron scattering which include the effects of rescattering

associated with the Wilson line. Thus it is an important question whether the final/initial

state gluonic interactions responsible for the dynamics of rescattering can be associated

in a definite way with the light-front wave function eigensolutions of QCD. The resulting

augmented LFWFs provide an important tool for understanding the factorization properties

of dynamical hadronic phenomena including single-spin asymmetries and diffraction.

It has been shown that the light-cone gauge condition A+ = 0 does not fix the gauge of

Abelian or non-Abelian gauge fields completely [7]: one has to choose a boundary condition

for the transverse component of the gauge potential at spatial infinity: A⊥(x
− = ±∞) [7].

The propagators of the gauge field which define the QCD Light-Front Hamiltonian in the

Heisenberg problem are regulated using the principal value prescription. However, a different

choice of boundary condition will lead to different properties of the light-front wave function

amplitudes. In particular, if we choose a retarded (A⊥(x
− = −∞) = 0) or advanced

(A⊥(x
− = ∞) = 0) boundary condition, the resulting augmented light-front wave function

will contain the necessary phase to generate the nonzero single spin asymmetry in hadronic

reactions. We will demonstrate these properties, giving an explicit calculation in light-

front time-ordered perturbation theory [2]. The result of our analysis provides the general

structure of augmented LFWFs which is easy to apply to phenomenological applications. As

an example, we will present results for the three-quark Fock state component of nucleon and

the quark-antiquark component of pion at lowest non-trivial order. We can further simplify

the result for the pion in terms of the distribution amplitudes. Given these light-front wave

function amplitudes results, it is straightforward to calculate the pseudo-time-reversal-odd

quark distributions of the nucleon and pion, by applying the overlap formalism derived

in [12]. The light-cone gauge with retarded/advanced boundary condition has also been

used to investigate the small-x physics [13–16], in particular, to study the evolution and

factorization for nucleus-nucleus collisions [16].

The rest of this paper is organized as follows. In Sec. II, we present a general derivation

of augmented LFWFs using light-front time-order perturbation theory within a lowest order
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formalism. In Sec. III, we apply our method to the construction of augmented light-

front wave function amplitudes for the three-quark Fock component of nucleon and quark-

antiquark component of the pion. We summarize our paper in Sec. IV.

II. GENERAL DERIVATIONS

We start our derivation by constructing the general form for a Fock state expansion of

any given hadron,

|P, S〉 =
∑

n

∫ n
∏

i=1

d[i]ψn(xi, ki⊥, λi) a
†
1a

†
2...a

†
n|0〉 , (1)

where P and S are the momentum and spin of the hadron, d[i] = dxid
2ki⊥/(

√
2xi(2π)

3) with

the overall constraint on xi and ki⊥ implicit. In this Fock state, each parton is represented

by the associated creation operator a†i (ki) with k
µ
i = (k+i ,

~k⊥i) = (xiP
+, ~k⊥i), which contains

certain longitudinal momentum k+i = xiP
+ and transverse momentum ki⊥, whereas the

minus component is determined by the on-shell condition k−i = (k2⊥ +m2
i )/k

+
i . Implicitly,

the above light-front wave function amplitude ψn depends on the orbital angular momentum

projection from the constituents with the form of (kxi ±kyi ) [17]. Since the following derivation
does not depend on this structure, we will not include it explicitly.

As discussed in the Introduction, the definition of a light-front wave function amplitude

ψn can be extended to include rescattering effects so its phase is not necessary real. We

can obtain the imaginary part (or the phase), by iterating the light-front wave function

eigensolutions employing a particular boundary condition for the gauge field. In fact as

we shall show, the phase of the augmented wavefunctions can be computed perturbatively

by applying light-front time-ordered perturbation theory [2] analogous to the Lippmann-

Schwinger method.

The first order correction to the LFWF can be obtained by iterating the Light-Front

equation of motion:

(P− −
∑

k−)ψn(xi, ki⊥) =

∫

d[i]′K[k; ℓ]⊗ ψ′
n(yi, ℓi⊥) , (2)

where
∑

k− represents the sum of all partons energy k−i , d[i]
′ represents the integral of

(yi, ℓi⊥). The interaction kernel K can be calculated from the light-front time-order pertur-

bation theory [2]. The wave functions ψn and ψ′
n may differ. From the above expression,
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(a) (b)

y1, ℓ1⊥

y2, ℓ2⊥ x2, k2⊥

x1, k1⊥

yn, ℓn⊥ xn, kn⊥

FIG. 1. Light-front time-order perturbation Feynman diagrams for the phase contribution from

one-gluon exchange between two constituent quarks.

we find that the phase of ψn may come from the wave function in the right hand side ψ′
n

or the interaction kernel K. In the following, we assume that the wave function ψ′
n is real,

for example, from model calculation such as constituent quark model [18]. We will focus on

the contribution from the interaction kernel. We will calculate, in particular, the one-gluon

exchange contribution to the interaction kernel.

At the lowest order of the light-front time-order perturbation theory, we have one gluon

exchange contribution to the interaction kernel. This can be expressed as a sum of all

diagrams with gluon connection between all possible pair of constituents in the light-front

wave function. For example, the contribution from the gluon exchange between the ith and

jth quark can be written as,

K[k; ℓ]ij =
ūλi

(xi, ki⊥)√
xi

γµ
uλ′

i
(yi; ℓi⊥)√
yi

dµν
ūλj

(xj , kj⊥)√
xj

γν
uλ′

j
(yj; ℓj⊥)
√
yi

×











1

P− − q− − k−i − ℓ−j − ∑

α6={i,j}

k−α + iǫ

θ(q+)

q+

+
1

P− − q′− − k−j − ℓ−i −
∑

α6={i,j}

k−α + iǫ

θ(q′+)

q′+











, (3)

where λ represents the helicity for the associated quarks, q+ = k+j − ℓ+j and q′+ = k+i − ℓ+i ,

and the color factors are implicit in the above equation. Similar expression shall hold for the

gluon constituent in the wave function, and so the final results. We illustrate the contribution

in the above calculations for i = 1 and j = 2. The first term in the above bracket comes

from Fig. 1(a), whereas the second term comes from Fig. 1(b). Moreover, at this particular
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order, quark number is conserved, such that n = n′. The gluon polarization tensor is defined

as,

dµν = −gµν +
vµq̃ν + vν q̃µ

[v · q] , (4)

where v is a light-like vector v · P = 1, q̃ differs from q in the minus component to take into

account the instant propagator contribution [2]. When one solves the Heisenberg eigenvalue

problem for light-front QCD as in discretized light-front quantization [3], the light-cone

gauge singularity is regulated by the principal value prescription, which corresponds to the

antisymmetric boundary condition for the gauge potential A⊥(x
− = +∞)+A⊥(x

− = −∞) =

0. However, this prescription will not result into an imaginary part for the light-front wave

function from the above interaction kernel. In the following calculation, we will choose the

advanced boundary condition: A⊥(x
− = +∞) = 0 whereas A⊥(x

− = −∞) 6= 0 in order

to construct the augmented light-front wavefunction. With this boundary condition, the

light-cone singularity will be regulated by [7],

vµq̃ν + vµq̃ν
[v · q] |Adv. =

vµq̃ν
v · q − iǫ

+
vν q̃µ

v · q + iǫ
, (5)

where the momentum flow of q is toward to the vertex ν. Clearly, this term contains a phase.

The imaginary part is simple, and proportional to a Delta function: iπδ(v · q). Since we are

only interested in the imaginary part of the light-front wave function amplitudes, we simply

apply this Delta function to the interaction kernel in Eq. (3). In particular, we find that the

dominant contribution comes from the d+⊥ components of the dµν tensor [7, 15]. All other

contributions cancel out between the above two terms or by themselves. Another important

consequence is that the helicities are conserved in the interaction kernel: δλiλ
′

i
δλjλ

′

j
. After a

little algebra, we obtain a rather simple result for the imaginary part of the light-front wave

function amplitude generated from lowest order perturbation theory,

I [ψn(xα, kα⊥)] = −αs

2π
[C.F.]

∫

d2q⊥
~q2⊥

(

1− P− −
∑

ℓ−

P− −
∑

k−

)

∑

i 6=j

ψ(ij)
n (xβ ; ℓβ⊥) , (6)

where [C.F.] represents the color-factor for the Feynman diagram in Fig. 1 and ψ
(ij)
n =

ψn(xα; ℓi⊥ = ki⊥ − q⊥, ℓj⊥ = kj⊥ + q⊥, ℓβ⊥|β 6=i,j = kβ⊥). We notice that the P⊥ dependence

through P− in the right hand side of the above equation cancels out in the numerator and

denominator, respectively. We emphasize that the wave function at the right hand side only

contains real part.
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The above equation is the main result of this paper. It explicitly demonstrates that

the light-front wave function amplitudes contain an imaginary part if we choose advanced

boundary condition for the transverse component of the gauge potential. If we choose the

retarded boundary condition, we obtain an opposite sign in the above equation.

III. APPLICATIONS TO PION AND NUCLEON

The three-quark Fock state components have been classified in Ref. [12]. For these light-

front wave function amplitudes, we can apply the derivation in the last section, and obtain

the imaginary part as,

I [Ψqqq(xi, ki⊥)] =
αs

2π
CB

∫

d2ℓ1⊥d
2ℓ2⊥d

2ℓ3⊥δ
(2)(ℓ1⊥ + ℓ2⊥ + ℓ3⊥)Ψqqq(xi, ℓi⊥)

×
(

1− P− −
∑

ℓ−

P− −
∑

k−

)

[

δ(2)(ℓ3⊥ − k3⊥)

(~k1⊥ − ~ℓ1⊥)2
+ (2 ↔ 3) + (1 ↔ 3)

]

, (7)

where CB = (Nc + 1)/2Nc and Ψ represents the general wave function amplitude constructed

in Ref. [12]. By applying these results, we are able to formulate the naive time-reversal-odd

quark distributions (such as the quark Sivers function) in terms of the light-front wave

function amplitudes, by taking into account the above imaginary phase using the above

derivation [12].

For the quark-antiquark Fock component of pion, the result can be further simplified as

I [ψ(x, k⊥)] =
αs

2π
CF

∫

d2q⊥
~q2⊥

ψ(x, k⊥ − q⊥)

(

1−
x(1− x)M2 − (k⊥ − q⊥)

2 −m2
q

x(1− x)M2 − k2⊥ −m2
q

)

, (8)

where we have chosen P⊥ = 0 and assumed that the quark and antiquark have the same

mass mq and CF = (N2
C − 1)/2NC. In particular, if we are interested in the large transverse

momentum behavior of the light-front wave function amplitudes, we can expand the inter-

action kernel in terms of ℓ⊥/k⊥, and keep the leading order contribution. By doing that, we

will obtain,

I [ψ(x, k⊥)] =
αs

2π

1

~k2⊥
CFφ(x) , (9)

and φ(x) is the leading-twist distribution amplitude for Pion, normalized by the leading

Fock component light-front wave function φ(x) =
∫

d2ℓ⊥ψ(x, ℓ⊥). Similar expressions can

be found for the quark-diquark model [5].
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Although light-front wave functions depend on the boundary condition of the gauge

potential in the light-cone gauge, physical observables cannot depend on this choice because

of gauge invariance [7, 10]. In particular, the single-spin asymmetry in semi-inclusive deep

inelastic polarized proton deep inelastic scattering ℓpl → ℓ′qX and the associated quark

Sivers function can be formulated simply as the overlap of augmented LFWFs using the

advance boundary condition [12]. In particular, it is the phase difference between the LFWFs

for the S and P -wave Fock components that contributes to the quark Sivers function in the

quark-diquark model studied in Ref. [5]. The imaginary phases are calculated by using the

general formalism Eq. (6) with similar expression as Eq. (8).

The result for the Sivers single-spin asymmetry using augmented LFWFs is identical

to that found in Ref. [5] using conventional LFWFs (with the principal value boundary

condition), together with an explicit calculation of the final state phases which arise from the

rescattering of the struck quark with the spectator diquark after the lepton-quark interaction.

This identity is possible since the final-state phase due to rescattering is independent of the

momentum transferred in the lepton-quark interaction. On the other hand, If we choose the

retarded boundary condition, the augmented wave function will have opposite imaginary

part. However, under this boundary condition, we have to take into account the final state

interaction effects (the gauge link contributions from the quark distributions), but again,

this leads to the same result compared to that using the advanced boundary condition.

Similar conclusions hold for the small-x parton distribution calculated in [10]. We leave

this topic for a future publication.

IV. SUMMARY AND DISCUSSIONS

We have use light-front time-ordered perturbation theory to obtain augmented light-

front wave functions which contain an imaginary phase which depends on the choice of

advanced or retarded boundary condition for the gauge potential in light-cone gauge. We

have applied these results to construct augmented wavefunctions for the three-quark or

quark-diquark Fock state components of nucleon and the quark-antiquark component of the

pion. We obtain the leading-twist quark Sivers function from these augmented light-front

wavefunctions, by applying the overlap formalism [12]. The result is identical to the explicit

calculation [5] of the single spin-asymmetry in semi-inclusive deep inelastic lepton-polarized
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nucleon scattering where the required phases come from the final-state rescattering of the

struck quark with the nucleon spectators.
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